Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bull Entomol Res ; 112(2): 219-227, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35301960

RESUMO

Embryo development in eggs of the spittlebug Mahanarva spectabilis (Distant) (Hemiptera: Cercopidae) passes through four phases (known as S1 to S4) being stopped at S2 during diapause. Studies about the molecular basis of diapause in spittlebugs are nonexistent. Here, we analyzed proteins from non-diapausing (ND), diapausing (D) and post-diapausing (PD) eggs of the spittlebug M. spectabilis. In total, we identified 87 proteins where 12 were in common among the developmental and diapause phases and 19 remained as uncharacterized. Non-diapausing eggs (S2ND and S4ND) showed more proteins involved in information storage and processing than the diapausing ones (S2D). Eggs in post-diapausing (S4PD) had a higher number of proteins associated with metabolism than S2D. The network of protein interactions and metabolic processes allowed the identification of different sets of molecular interactions for each developmental and diapause phases. Two heat shock proteins (Hsp65 and Hsp70) along with two proteins associated with intracellular signaling (MAP4K and a serine/threonine-protein phosphatase) were found only in diapausing and/or post-diapausing eggs and are interesting targets to be explored in future experiments. These results shine a light on one key biological process for spittlebug survival and represent the first search for proteins linked to diapause in this important group of insects.


Assuntos
Diapausa de Inseto , Diapausa , Hemípteros , Animais , Hemípteros/fisiologia
2.
An Acad Bras Cienc ; 93(3): e20191456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34378641

RESUMO

The spittlebugs Mahanarva spectabilis economically challenges cattle production of neotropical regions, due to its voracious feeding on tropical grasses. Here, we evaluated biochemical responses of the interaction between M. spectabilis and the widely cultivated tropical grasses Brachiaria spp. (i.e., brizantha and decumbens) and elephant grasses (cvs. Roxo de Botucatu and Pioneiro), regarding lipoxygenases, protease inhibitors, phytohormones, and proteolytic activities in the midgut of M. spectabilis. The M. spectabilis-infested grasses increased lipoxygenases activity, except for cv. Pioneiro. The levels of the phytohormones jasmonic and abscisic acids were similarly low in all genotypes and increased under herbivory. Furthermore, salicylic acid concentration was constitutively higher in Brachiaria sp., increasing only in spittlebug-infested B. decumbens. M. spectabilis infestations did not induce increases of protease inhibitors in any forage grass type. The trypsin activity remained unaltered, and the total proteolytic activity increased only in B. decumbens-fed insects. Our findings revealed that most forage grasses exposed to spittlebugs activate the lipoxygenases pathway, resulting in increased abscisic and jasmonic acids. However, greater amounts of these hormones do not induce protease inhibitory activity in response to spittlebug attack. This knowledge certainly helps to guide future projects aiming at reducing the impact of spittlebugs on forage production.


Assuntos
Brachiaria , Hemípteros , Pennisetum , Animais , Bovinos , Genótipo , Herbivoria
3.
Arch Insect Biochem Physiol ; 107(3): e21792, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33948994

RESUMO

Although the importance of intestinal hydrolases is recognized, there is little information on the intestinal proteome of lepidopterans such as Anticarsia gemmatalis. Thus, we carried out the proteomic analysis of the A. gemmatalis intestine to characterize the proteases by LC/MS. We examined the interactions of proteins identified with protease inhibitors (PI) using molecular docking. We found 54 expressed antigens for intestinal protease, suggesting multiple important isoforms. The hydrolytic arsenal featured allows for a more comprehensive understanding of insect feeding. The docking analysis showed that the soybean PI (SKTI) could bind efficiently with the trypsin sequences and, therefore, insect resistance does not seem to involve changing the sequences of the PI binding site. In addition, a SERPIN was identified and the interaction analysis showed the inhibitor binding site is in contact with the catalytic site of trypsin, possibly acting as a regulator. In addition, this SERPIN and the identified PI sequences can be targets for the control of proteolytic activity in the caterpillar intestine and serve as a support for the rational design of a molecule with greater stability, less prone to cleavage by proteases and viable for the control of insect pests such as A. gemmatalis.


Assuntos
Mariposas/enzimologia , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Intestinos/enzimologia , Larva/enzimologia , Simulação de Acoplamento Molecular , Mariposas/genética , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética
4.
Plant Physiol Biochem ; 155: 196-212, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32771931

RESUMO

Insect pests such as Anticarsia gemmatalis cause defoliation and yield losses. Soybean breeding has obtained resistant genotypes, however the mechanism remains unknown. Studies indicated the presence of deterrents compounds in the resistant genotype IAC17, and their leaf metabolite profiles were compared to the susceptible genotype UFV105, which was elicited or not by caterpillar infestation. Cluster analysis indicated a significative distinction between these profiles as well as differences in plant defense pathways. Methylquercetins were constitutively present in the largest concentrations, specifically in the IAC17. Relationship between the resistance and the levels of phytohormones jasmonic acid, abscisic acid and salicylic acid was not observed. However, 1-aminocyclopropane -1carboxylic acid levels indicated that the ethylene may be involved in the constitutive biosynthesis of bioactive compounds. Extracts were added to the diets at three different concentrations to evaluate the effect on caterpillar survival. Lowest survival rates were observed when extracts from the resistant IAC 17 were used, at the lowest concentrations. Survival rates were not higher when IAC 17 infested by caterpillars were used. On the other hand, when extracts from the susceptible were used, the survival reductions were only observed in the highest extract concentrations. These supplementations of the diet reduced the digestive capacity, agreeing with the proteolytic activities, whereas malformations of the intestinal cells were dose dependent. The inhibitory effects persisted in higher dilutions only for the IAC17. Constitutive resistance was also explained by higher levels of protease inhibition. These results can be useful to elucidate the genes and cascades controlling the resistance.


Assuntos
/genética , Lepidópteros/fisiologia , Metaboloma , Folhas de Planta/metabolismo , Animais , Digestão , Genótipo , Herbivoria , Larva/fisiologia
5.
PLoS One ; 13(10): e0205010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30281662

RESUMO

Attack by herbivores is a major biotic stress limiting the soybean crop production. Plant defenses against caterpillars include the production of secondary metabolites such as flavonoids, which constitute a diverse group of plant secondary metabolites. Thus, a more discriminate metabolic profiling between genotypes are important for a more comprehensive and reliable characterization of soybean resistance. Therefore, in this study a non-targeted LC/MS-based for analysis of flavonoid profiles of soybean genotypes contrasting to the resistance to A. gemmatalis was applied. Clustering analysis revealed profiles highly distinct between the susceptible UFV 105 AP and the resistant IAC 17 genotypes. This comparative approach enables to identify directly from leaf extract some new compounds related to resistance, some of which were present in higher abundance specifically in the IAC 17 genotype: four Quercetin conjugates, Rutin (Quercetin 3-O-Rutinoside), Quercetin-3,7-O- di-glucoside, Quercetin-3-O-rhamnosylglycoside-7-O-glucoside and Quercetin-3-O-rhamnopyranosyl-glucopyranoside-rhamnopyranoside; two Genistein conjugates, Genistein-7-O-diglucoside-dimalonylated and Genistein-7-O-6-O-malonylglucoside; and one Daidzein conjugate, Daidzein-7-O-Glucoside-malonate. The most abundant flavonoid glycoconjugates in soybean leaves belongs to Quercetin and Kaempferol classes. However, only one from the identified compounds was classified as a Kaempferol. The Kaempferol-3-O-L-rhamnopyranosyl-glucopyranoside showed high abundance in the resistant genotype IAC 17. The metabolic profiles generated by LC/MS allowed the reconstruction of the flavonoid biosynthetic pathways, which revealed a constitutive character for herbivory resistance in the resistant genotype IAC-17 and a metabolic regulation for the rechanneling of Quercetin, Kaempferol and Genistein conjugates in soybean. Highest relative abundances were detected for glyconjugates, such as Rutin, Quercetin 3-O-rhamnosylglycoside-7-O-glucoside and Quercitin-3-O-rhamnopyranosyl-glucopyranoside-rhamnopyranoside in the leaves of the resistant genotype.


Assuntos
Flavonoides/metabolismo , Genótipo , /metabolismo , Lepidópteros/fisiologia , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem
6.
J Endod ; 43(9): 1479-1485, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28712636

RESUMO

INTRODUCTION: An acute apical abscess is a severe response of the host to massive invasion of the periapical tissues by bacteria from infected root canals. Although many studies have investigated the microbiota involved in the process, information on the host factors released during abscess formation is scarce. The purpose of this study was to describe the human exoproteome in samples from acute apical abscesses. METHODS: Fourteen pus samples were obtained by aspiration from patients with an acute apical abscess. Samples were subjected to protein digestion, and the tryptic peptides were analyzed using a mass spectrometer and ion trap instrument. The human proteins identified in this analysis were classified into different functional categories. RESULTS: A total of 303 proteins were identified. Most of these proteins were involved in cellular and metabolic processes. Immune system proteins were also very frequent and included immunoglobulins, S100 proteins, complement proteins, and heat shock proteins. Polymorphonuclear neutrophil proteins were also commonly detected, including myeloperoxidases, defensins, elastases, and gelatinases. Iron-sequestering proteins including transferrin and lactoferrin/lactotransferrin were found in many samples. CONCLUSIONS: The human exoproteome included a wide variety of proteins related to cellular processes, metabolism, and immune response. Proteins involved in different mechanisms against infection, tissue damage, and protection against tissue damage were identified. Knowledge of the presence and function of these proteins using proteomics provides an insight into the complex host-pathogen relationship, the host antimicrobial strategies to fight infections, and the disease pathogenesis.


Assuntos
Abscesso Periapical/metabolismo , Abscesso Periapical/microbiologia , Proteínas/metabolismo , Proteoma , Doença Aguda , Humanos , Abscesso Periapical/imunologia , Proteínas/análise , Supuração/metabolismo
7.
Appl Biochem Biotechnol ; 172(5): 2412-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390854

RESUMO

An extracellular ß-glucanase secreted by Kluyveromyces marxianus was identified for the first time. The optimal conditions for the production of this enzyme were evaluated by response surface methodology. The optimal conditions to produce ß-glucanase were a glucose concentration of 4% (w/v), a pH of 5.5, and an incubation temperature of 35 °C. Response surface methodology was also used to determine the pH and temperature required for the optimal enzymatic activity. The highest enzyme activity was obtained at a pH of 5.5 and a temperature of 55 °C. Furthermore, the enzyme was partially purified and sequenced, and its specificity for different substrates was evaluated. The results suggest that the enzyme is an endo-ß-1,3(4)-glucanase. After optimizing the conditions for ß-glucanase production, the culture supernatant was found to be effective in digesting the cell wall of the yeast Saccharomyces cerevisiae, showing the great potential of ß-glucanase in the biotechnological production of soluble ß-glucan.


Assuntos
Proteínas Fúngicas/biossíntese , Glicosídeo Hidrolases/biossíntese , Kluyveromyces/enzimologia , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Parede Celular/metabolismo , Análise Fatorial , Fermentação , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Saccharomyces cerevisiae/química , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
8.
Plant Physiol ; 164(2): 654-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24319082

RESUMO

The binding protein (BiP) has been demonstrated to participate in innate immunity and attenuate endoplasmic reticulum- and osmotic stress-induced cell death. Here, we employed transgenic plants with manipulated levels of BiP to assess whether BiP also controlled developmental and hypersensitive programmed cell death (PCD). Under normal conditions, the BiP-induced transcriptome revealed a robust down-regulation of developmental PCD genes and an up-regulation of the genes involved in hypersensitive PCD triggered by nonhost-pathogen interactions. Accordingly, the BiP-overexpressing line displayed delayed leaf senescence under normal conditions and accelerated hypersensitive response triggered by Pseudomonas syringae pv tomato in soybean (Glycine max) and tobacco (Nicotiana tabacum), as monitored by measuring hallmarks of PCD in plants. The BiP-mediated delay of leaf senescence correlated with the attenuation of N-rich protein (NRP)-mediated cell death signaling and the inhibition of the senescence-associated activation of the unfolded protein response (UPR). By contrast, under biological activation of salicylic acid (SA) signaling and hypersensitive PCD, BiP overexpression further induced NRP-mediated cell death signaling and antagonistically inhibited the UPR. Thus, the SA-mediated induction of NRP cell death signaling occurs via a pathway distinct from UPR. Our data indicate that during the hypersensitive PCD, BiP positively regulates the NRP cell death signaling through a yet undefined mechanism that is activated by SA signaling and related to ER functioning. By contrast, BiP's negative regulation of leaf senescence may be linked to its capacity to attenuate the UPR activation and NRP cell death signaling. Therefore, BiP can function either as a negative or positive modulator of PCD events.


Assuntos
Retículo Endoplasmático/metabolismo , /genética , Proteínas de Choque Térmico/genética , Proteínas de Plantas/metabolismo , Caspase 1/metabolismo , Morte Celular , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Choque Térmico/metabolismo , Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Pseudomonas syringae/fisiologia , Transdução de Sinais , /microbiologia , Fatores de Tempo , Resposta a Proteínas não Dobradas/genética
9.
BMC Genomics ; 13 Suppl 5: S4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23095859

RESUMO

BACKGROUND: The shotgun strategy (liquid chromatography coupled with tandem mass spectrometry) is widely applied for identification of proteins in complex mixtures. This method gives rise to thousands of spectra in a single run, which are interpreted by computational tools. Such tools normally use a protein database from which peptide sequences are extracted for matching with experimentally derived mass spectral data. After the database search, the correctness of obtained peptide-spectrum matches (PSMs) needs to be evaluated also by algorithms, as a manual curation of these huge datasets would be impractical. The target-decoy database strategy is largely used to perform spectrum evaluation. Nonetheless, this method has been applied without considering sensitivity, i.e., only error estimation is taken into account. A recently proposed method termed MUDE treats the target-decoy analysis as an optimization problem, where sensitivity is maximized. This method demonstrates a significant increase in the retrieved number of PSMs for a fixed error rate. However, the MUDE model is constructed in such a way that linear decision boundaries are established to separate correct from incorrect PSMs. Besides, the described heuristic for solving the optimization problem has to be executed many times to achieve a significant augmentation in sensitivity. RESULTS: Here, we propose a new method, termed MUMAL, for PSM assessment that is based on machine learning techniques. Our method can establish nonlinear decision boundaries, leading to a higher chance to retrieve more true positives. Furthermore, we need few iterations to achieve high sensitivities, strikingly shortening the running time of the whole process. Experiments show that our method achieves a considerably higher number of PSMs compared with standard tools such as MUDE, PeptideProphet, and typical target-decoy approaches. CONCLUSION: Our approach not only enhances the computational performance, and thus the turn around time of MS-based experiments in proteomics, but also improves the information content with benefits of a higher proteome coverage. This improvement, for instance, increases the chance to identify important drug targets or biomarkers for drug development or molecular diagnostics.


Assuntos
Algoritmos , Inteligência Artificial , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Proteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Análise Multivariada , Redes Neurais de Computação , Sensibilidade e Especificidade
10.
J Exp Bot ; 63(11): 4191-212, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22511801

RESUMO

The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora.


Assuntos
Coffea/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Aclimatação , Coffea/genética , Secas , Etiquetas de Sequências Expressas , Genótipo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo
11.
BMC Plant Biol ; 11: 85, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575242

RESUMO

BACKGROUND: In higher plants, the inhibition of photosynthetic capacity under drought is attributable to stomatal and non-stomatal (i.e., photochemical and biochemical) effects. In particular, a disruption of photosynthetic metabolism and Rubisco regulation can be observed. Several studies reported reduced expression of the RBCS genes, which encode the Rubisco small subunit, under water stress. RESULTS: Expression of the RBCS1 gene was analysed in the allopolyploid context of C. arabica, which originates from a natural cross between the C. canephora and C. eugenioides species. Our study revealed the existence of two homeologous RBCS1 genes in C. arabica: one carried by the C. canephora sub-genome (called CaCc) and the other carried by the C. eugenioides sub-genome (called CaCe). Using specific primer pairs for each homeolog, expression studies revealed that CaCe was expressed in C. eugenioides and C. arabica but was undetectable in C. canephora. On the other hand, CaCc was expressed in C. canephora but almost completely silenced in non-introgressed ("pure") genotypes of C. arabica. However, enhanced CaCc expression was observed in most C. arabica cultivars with introgressed C. canephora genome. In addition, total RBCS1 expression was higher for C. arabica cultivars that had recently introgressed C. canephora genome than for "pure" cultivars. For both species, water stress led to an important decrease in the abundance of RBCS1 transcripts. This was observed for plants grown in either greenhouse or field conditions under severe or moderate drought. However, this reduction of RBCS1 gene expression was not accompanied by a decrease in the corresponding protein in the leaves of C. canephora subjected to water withdrawal. In that case, the amount of RBCS1 was even higher under drought than under unstressed (irrigated) conditions, which suggests great stability of RBCS1 under adverse water conditions. On the other hand, for C. arabica, high nocturnal expression of RBCS1 could also explain the accumulation of the RBCS1 protein under water stress. Altogether, the results presented here suggest that the content of RBCS was not responsible for the loss of photosynthetic capacity that is commonly observed in water-stressed coffee plants. CONCLUSION: We showed that the CaCe homeolog was expressed in C. eugenioides and non-introgressed ("pure") genotypes of C. arabica but that it was undetectable in C. canephora. On the other hand, the CaCc homeolog was expressed in C. canephora but highly repressed in C. arabica. Expression of the CaCc homeolog was enhanced in C. arabica cultivars that experienced recent introgression with C. canephora. For both C. canephora and C. arabica species, total RBCS1 gene expression was highly reduced with WS. Unexpectedly, the accumulation of RBCS1 protein was observed in the leaves of C. canephora under WS, possibly coming from nocturnal RBCS1 expression. These results suggest that the increase in the amount of RBCS1 protein could contribute to the antioxidative function of photorespiration in water-stressed coffee plants.


Assuntos
Coffea/genética , Secas , Folhas de Planta/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Sequência de Bases , Clonagem Molecular , Coffea/enzimologia , Coffea/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Genótipo , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Fotoperíodo , Folhas de Planta/enzimologia , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Estresse Fisiológico , Água/metabolismo
12.
PLoS Genet ; 7(5): e1002064, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21589895

RESUMO

The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.


Assuntos
Genoma de Planta , Herbaspirillum/genética , Cromossomos de Plantas , Herbaspirillum/metabolismo , Interações Hospedeiro-Patógeno , Fixação de Nitrogênio , Pressão Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
PLoS One ; 4(6): e5781, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19492062

RESUMO

NSP-interacting kinase (NIK1) is a receptor-like kinase identified as a virulence target of the begomovirus nuclear shuttle protein (NSP). We found that NIK1 undergoes a stepwise pattern of phosphorylation within its activation-loop domain (A-loop) with distinct roles for different threonine residues. Mutations at Thr-474 or Thr-468 impaired autophosphorylation and were defective for kinase activation. In contrast, a mutation at Thr-469 did not impact autophosphorylation and increased substrate phosphorylation, suggesting an inhibitory role for Thr-469 in kinase function. To dissect the functional significance of these results, we used NSP-expressing virus infection as a mechanism to interfere with wild type and mutant NIK1 action in plants. The NIK1 knockout mutant shows enhanced susceptibility to virus infections, a phenotype that could be complemented with ectopic expression of a 35S-NIK1 or 35S-T469A NIK1 transgenes. However, ectopic expression of an inactive kinase or the 35S-T474A NIK1 mutant did not reverse the enhanced susceptibility phenotype of knockout lines, demonstrating that Thr-474 autophosphorylation was needed to transduce a defense response to geminiviruses. Furthermore, mutations at Thr-474 and Thr-469 residues antagonistically affected NIK-mediated nuclear relocation of the downstream effector rpL10. These results establish that NIK1 functions as an authentic defense receptor as it requires activation to elicit a defense response. Our data also suggest a model whereby phosphorylation-dependent activation of a plant receptor-like kinase enables the A-loop to control differentially auto- and substrate phosphorylation.


Assuntos
Antivirais/farmacologia , Treonina/química , Alanina/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Núcleo Celular/metabolismo , Geminiviridae/genética , Dados de Sequência Molecular , Mutação , Fosforilação , Mutação Puntual , Estrutura Terciária de Proteína , Proteína Ribossômica L10 , Proteínas Ribossômicas/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vírus/metabolismo
14.
J Biotechnol ; 126(3): 291-4, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16797765

RESUMO

A modified antibiosis assay was used to evaluate growth inhibition of symbiotic and endophytic bacteria by E. coli strains producing Bacillus amyloliquefaciens ribonuclease, barnase. Inhibition zones were only observed when the assays were performed in minimal medium agar. However, bacterial growth inhibition was not detected when using rich medium or susceptible strains expressing the ribonuclease inhibitor protein, barstar. Our results suggest that barnase may act as a broad range bacteriocin. The ecological significance of these results is discussed.


Assuntos
Antibiose/fisiologia , Escherichia coli/enzimologia , Fixação de Nitrogênio/fisiologia , Ribonucleases/metabolismo , Simbiose/fisiologia , Proteínas de Bactérias , Proliferação de Células/efeitos dos fármacos , Escherichia coli/genética , Ribonucleases/genética
15.
J Biotechnol ; 118(1): 9-16, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15908028

RESUMO

Barnase is a potent ribonuclease widely used as a cytotoxic agent, tightly regulated by barstar to maintain cell viability. In this report, we describe a new composite regulatory system to control barnase cytotoxicity and expression, involving barstar and lacI genes under control of the NifA-, sigma54-dependent Sinorhizobium meliloti nifH promoter, and the barnase gene under control of the LacI-repressible ptac promoter. In this system, expression of thenifH promoter, activated by constitutively expressed NifA, resulted in constitutive synthesis of the LacI and barstar proteins. LacI, in turn, represses transcription of the barnase gene and barstar inhibits any ribonuclease activity. Full expression of the barnase gene induced by IPTG led to cell death. Control of barnase synthesis and activity could be achieved by regulating nifA expression and NifA protein activity by specific environmental signals.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Engenharia de Proteínas/métodos , Ribonucleases/genética , Ribonucleases/metabolismo , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Melhoramento Genético/métodos , Regiões Promotoras Genéticas/genética
16.
Genet. mol. biol ; 26(4): 537-543, dec. 2003. ilus, tab
Artigo em Inglês | LILACS | ID: lil-355300

RESUMO

Herbaspirillum spp. are endophytic diazotrophic bacteria associated with important agricultural crops. In this work, we analyzed six strains of H. seropedicae (Z78, M2, ZA69, ZA95, Z152, and Z67) and one strain of H. rubrisubalbicans (M4) by restriction fragment length polymorphism (RFLP) using HindIII or DraI restriction endonucleases, random amplified polymorphic DNA (RAPD), and partial sequencing of 16S rDNA. The results of these analyses ascribed the strains studied to three distinct groups: group I, consisting of M2 and M4; group II, of ZA69; and group III, of ZA95, Z78, Z67, and Z152. RAPD fingerprinting showed a higher variability than the other methods, and each strain had a unique electrophoretic pattern with five of the six primers used. Interestingly, H. seropedicae M2 was found by all analyses to be genetically very close to H. rubrisubalbicans M4. Our results show that RAPD can distinguish between all Herbaspirillum strains tested.


Assuntos
Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , RNA Ribossômico , Spirillum , Meios de Cultura , Plantas
17.
FEMS Microbiol Ecol ; 45(1): 39-47, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19719605

RESUMO

Abstract The interactions between maize, sorghum, wheat and rice plants and Herbaspirillum seropedicae were examined microscopically following inoculation with the H. seropedicae LR15 strain, a Nif(+) (Pnif::gusA) mutant obtained by the insertion of a gusA-kanamycin cassette into the nifH gene of the H. seropedicae wild-type strain. The expression of the Pnif::gusA fusion was followed during the association of the diazotroph with the gramineous species. Histochemical analysis of seedlings of maize, sorghum, wheat and rice grown in vermiculite showed that strain LR15 colonized root surfaces and inner tissues. In early steps of the endophytic association, H. seropedicae colonized root exudation sites, such as axils of secondary roots and intercellular spaces of the root cortex; it then occupied the vascular tissue and there expressed nif genes. The expression of nif genes occurred in roots, stems and leaves as detected by the GUS reporter system. The expression of nif genes was also observed in bacterial colonies located in the external mucilaginous root material, 8 days after inoculation. Moreover, the colonization of plant tissue by H. seropedicae did not depend on the nitrogen-fixing ability, since similar numbers of cells were isolated from roots or shoots of the plants inoculated with Nif(+) or Nif(-) strains.

18.
J Biotechnol ; 97(3): 243-52, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12084480

RESUMO

To monitor the colonization of wheat roots by Azospirillum brasilense, we constructed several plasmids based on the pBBR1 replicon expressing the gfp and gusA genes constitutively. Both genes were placed under control of the gentamycin resistance gene promoter resulting in high levels of expression in Escherichia coli and A. brasilense. The constructed plasmids were stably maintained in A. brasilense strains even in the absence of selective pressure. The colonization of wheat plants grown under controlled conditions in sterilized vermiculite by A. brasilense strain FP2 (a Sp7-derivative) transconjugants containing these plasmids was monitored. Bacteria expressing GFP were easily observed in fresh plant material by fluorescence microscopy. Cell aggregates and single bacteria were visualized on the surfaces of young root zones, such as roots hairs and lateral roots. Large cellular clumps were observed at the points of lateral root emergence or at intercellular spaces of root epidermal cells 30 days after inoculation. Although we failed to detected bacteria in internal cortical and xylem tissues of wheat roots, the initial stage of endophytic colonization by A. brasilense may involve the sites detected in this work.


Assuntos
Azospirillum brasilense/genética , Azospirillum brasilense/patogenicidade , Glucuronidase/genética , Proteínas Luminescentes/genética , Plasmídeos/genética , Triticum/microbiologia , Silicatos de Alumínio/farmacologia , Azospirillum brasilense/citologia , Azospirillum brasilense/efeitos dos fármacos , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Marcadores Genéticos/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde , Indicadores e Reagentes , Proteínas Luminescentes/análise , Microscopia de Fluorescência/métodos , Raízes de Plantas/microbiologia , Sensibilidade e Especificidade , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...